Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sihui Long, ${ }^{\text {a }}$ Maxime Siegler ${ }^{\text {b }}$ and Tonglei $\mathrm{Li}^{\mathbf{a} *}$

${ }^{\text {a }}$ Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40506-0082, USA, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Kentucky, Lexington, KY 40506-0055, USA

Correspondence e-mail: tonglei@uky.edu

Key indicators

Single-crystal X-ray study
$T=90 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.051$
$w R$ factor $=0.141$
Data-to-parameter ratio $=18.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-(2-Isopropylanilino)pyridine-3-carboxylic acid

The asymmetric unit of the title compound, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$, contains two molecules and in each of the molecules, the two aromatic rings, lying in two different planes, are bridged by a secondary amino group. This might be due to steric hindrance caused by the isopropyl group. Intra- and intermolecular N H. . O O hydrogen bonds link the molecules, forming an infinite one-dimensional tape structure; they may be effective in the stabilization of the crystal structure.

Comment

The title compound, (I), was first prepared in 1975 in a search for analgesic, anti-inflammatory, and antipyretic drugs. To study the effect of additives on the polymorphs as well as morphologies of 2-(3-chloro-2-methylanilino)nicotinic acid, we synthesized (I) through a procedure modified from Ting et al. (1990).

The asymmetric unit of (I) (Fig. 1) contains two molecules and the bond lengths and angles are within normal ranges (Allen et al., 1987). Each molecule contains two aromatic rings linked by a secondary amino group. Ideally, the two aromatic

Figure 1
The asymmetric unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.

Figure 2
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
rings would prefer to lie in the same plane, forming a conjugated π system throughout the whole molecule via the lone pair orbital of the amino group. In reality, the carboxyl group, $\mathrm{N} 10, \mathrm{C} 11$ and pyridine are almost coplanar, while the orthosubtituted benzene ring is twisted about the $\mathrm{N} 10-\mathrm{C} 11$ bond. The dihedral angles between the planes of rings $A(\mathrm{~N} 1 A / \mathrm{C} 2 A-$ $\mathrm{C} 6 A), B(\mathrm{C} 11 A-\mathrm{C} 16 A)$ and $A^{\prime}(\mathrm{N} 1 B / \mathrm{C} 2 B-\mathrm{C} 6 B), B^{\prime}(\mathrm{C} 11 B-$ $\mathrm{C} 16 B)$ are $A / B=88.08(5)^{\circ}$ and $A^{\prime} / B^{\prime}=61.78(5)^{\circ}$. This observation is similar to that of the four polymorphs of 2-(3-chloro-2-methylanilino)nicotinic acid (Takasuka et al., 1982).

As can be seen from the packing diagram (Fig. 2), intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) link the molecules, forming an infinite one-dimensional tape structure; they may be effective in the stabilization of the crystal structure. Dipole-dipole and van der Waals interactions are also effective in the molecular packing.

Experimental

2-Chloronicotinic acid ($11.1 \mathrm{~g}, 0.07 \mathrm{~mol}$) and 2-isopropylaniline $(10.3 \mathrm{~g}, 76 \mathrm{mmol})$ were dissolved in pyridine $(6 \mathrm{ml}, 76 \mathrm{mmol})$ and p $\mathrm{TsOH}(1.5 \mathrm{~g}, 9 \mathrm{mmol})$ in water $(40 \mathrm{ml})$ was added to the mixture. The resulting mixture was refluxed overnight. Solvents were removed under reduced pressure, then water $(25 \mathrm{ml})$ and EtOAc $(25 \mathrm{ml})$ were added. After separation, the organic layer was dried with anhydrous sodium sulfate. After filtration and solvent removal under vacuum, a colorless product was obtained (yield 80%, m.p. $441-443 \mathrm{~K}$). A supersaturated solution was made by dissolving the compound in acetone by heating; the solution was yellow although the compound
was colorless. The solution was allowed to evaporate slowly, and crystals were obtained as colorless rods the next day.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=256.30$
Monoclinic, $P 2_{b} / c$
$a=22.242$ (3) A
$b=8.921$ (1) A
$c=14.367$ (2) \AA
$\beta=104.07$ (1) ${ }^{\circ}$
$V=2765.2(6) \AA^{3}$

$$
\begin{aligned}
& Z=8 \\
& D_{x}=1.231 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=90.0(2) \mathrm{K} \\
& \text { Rod, colorless } \\
& 0.40 \times 0.20 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer ω scans
Absorption correction: multi-scan
(SCALEPACK; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.968, T_{\text {max }}=0.988$
12239 measured reflections 6330 independent reflections 3912 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$ $\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
H-atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.142$
$S=1.01$
6330 reflections
349 parameters

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 10 A-\mathrm{H} 10 A \cdots \mathrm{O} 8 A$	0.88	1.98	$2.6694(18)$	134
$\mathrm{~N} 10 B-\mathrm{H} 10 B \cdots \mathrm{O} 8 B$	0.88	1.98	$2.6788(18)$	135
$\mathrm{O} 9 A-\mathrm{H} 9 A \cdots \mathrm{~N} 1 A^{\mathrm{i}}$	0.84	1.84	$2.6723(18)$	173
$\mathrm{O}_{\mathrm{i}} B-\mathrm{H} 9 B \cdots \mathrm{~N} 1 B^{\mathrm{i}}$	0.84	1.83	$2.6614(18)$	169

Symmetry code: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.
H atoms were positioned geometrically, with $\mathrm{O}-\mathrm{H}=0.84 \AA$ (for OH), $\mathrm{N}-\mathrm{H}=0.88 \AA$ (for NH) and $\mathrm{C}-\mathrm{H}=0.95,1.00$ and $0.98 \AA$ for aromatic, methine and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{N}, \mathrm{O})$, where $x=$ 1.5 for OH and methyl, and $x=1.2$ for all other H atoms.

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXL97 and local procedures.

TL and SL are grateful to Dr Sean Parkin for providing support and laboratory facilities. The authors also thank NSF for financial support (DMR-0449633).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Nonius (1999). COLLECT. March 12th 2002 release. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

organic papers

Sheldrick, G. M. (1995). XP in SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Takasuka, M., Nakai, H. \& Shiro, M. (1982). J. Chem. Soc. Perkin Trans. 2, pp. 1061-1067.
Ting, P. C., Kaminski, J. J., Sherlock, M. H., Tom, W. C., Lee, J. F., Bryant, R. W., Watnick, A. S. \& McPhail, A. T. (1990). J. Med. Chem. 33, 2697-2706.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

